четвер, 4 листопада 2021 р.

Планетарна модель


Мал.152. Результати експериментів Резерфорда безумовно доводили, що в центрі атома знаходиться масивне, позитивно заряджене ядро.

Узагальнюючи результати багаторічних експериментальних досліджень, Резерфорд в 1911 році робить висновок: атом представляє собою електромеханічну систему, в центрі якої знаходиться масивне, позитивно заряджене ядро, навколо якого обертається певна кількість електронів. Запропоновану Резерфордом модель загального устрою атома, назвали планетарною моделлю атома (мал153а).

Планетарна модель атома безумовно пояснювала результати дослідів Резерфорда і в цьому сенсі була безумовно достовірною. Однак, ця модель явно суперечила певним передбаченням теорії Максвела та деяким загально відомим експериментальним фактам. Дійсно. В планетарному атомі, електрон не може знаходитись в стані спокою. Адже з боку ядра на нього постійно діє певна електрична сила, яка прагне до того щоб електрон упав на ядро. Для того щоб не впасти на ядро, електрон повинен з певною швидкістю та відповідним доцентровим прискоренням (прискоренням для якого Fел=Fі) обертатись навколо нього. А обертаючись навколо ядра електрон, згідно з теорією Максвела, повинен випромінювати електромагнітну енергію. А випромінюючи цю енергію (втрачаючи енергію), електрон повинен наближатись до ядра та неминуче падати на нього. При цьому розрахунки показували, що тривалість життя планетарного атома не перевищує тисячних долей секунди. Експериментальні ж факти безумовно доводили, що атоми – частинки стабільні та довговічні.
Мал.153. Планетарна модель атома, з одного боку була прямим наслідком експериментальних фактів, а з іншого – явно суперечила передбаченням теорії Максвела.
Крім цього, вчені звернули увагу на ще один суперечливий факт. Його суть полягає в тому, що передбачене законами класичної фізики спіральне падіння електрона має супроводжуватись збільшенням частоти його обертання навколо атомного ядра. А це означає, що спектр випромінювання планетарного атома має бути таким, що певним неперервним чином змінюється. Насправді ж, кожна різновидність атомів випромінює свій незмінний лінійчатий спектр.

Таким чином, в фізиці виникла кризова ситуація: з одного боку, експериментальні факти безумовно доводили що планетарна модель атома є правильна. З іншого ж боку, експериментально підтверджена теорія Максвела наполягала на тому, що ця модель є не правильною. 

Вихід із цієї кризової ситуації запропонував в 1913 році данський фізик Нільс Бор. 
Бор розсудив так:
  • Якщо експериментальні факти безумовно доводять, що в центрі атома знаходиться масивне, позитивно заряджене ядро навколо якого обертається певна кількість електронів – значить, так воно і є. 
  • Якщо експериментальні факти безумовно доводять, що в енергетично не збудженому стані, атом не випромінює світло – зачить, так воно і є. 
  • Оскільки наші знання про суть тих процесів які відбуваються в атомі є досить поверхневими, то вирішення тих проблем які існують між планетарною моделлю атома та теорією Максвела, доцільно залишити на майбутнє.



Дослід Резерфорда

Однак наука стоїть на тому, що в ній критерієм істини є експеримент. А це означає, що в науці будь яка гіпотеза, в незалежності від того наскільки переконливою чи сумнівною вона виглядає, має бути експериментально перевіреною і відповідно підтвердженою чи спростованою. Яким же чином можна було перевірити внутрішній устрій атома в ті часи, коли сам факт існування атомів ще був під питанням? (Нагадаємо, що факт існування атомів (молекул) був безумовно доведений лише в 1908 році). Відповідь на це запитання дав англійський фізик Ернест Резерфорд (1871-1931).
В 1899 році, досліджуючи на передодні відкрите явище радіоактивності, Резерфорд експериментально встановив, що складовою частиною радіоактивного випромінювання є так зване α-випромінювання. При цьому він з’ясував, що α-випромінювання представляє собою потік швидких, масивних (m=4а.о.м.), позитивно заряджених (q0=+2е) частинок. Власне ці α-частинки Резерфорд і вирішив застосувати в якості того інструменту який дозволить дослідити внутрішній устрій атома. Ідея Резерфорда була гранично простою: якщо на шляху направленого потоку α-частинок поставити тонкий шар речовини, то при взаємодії з атомами цієї речовини, α-частинки будуть змінювати траєкторію свого руху. Аналізуючи ці зміни, можна буде зробити певний висновок щодо внутрішнього устрою атома.

Потрібно зауважити, що в своїх експериментах, в якості досліджуваної речовини, Резерфорд обрав золото. Такий вибір пояснювався двома обставинами. По перше, атоми золота є достатньо масивними (m=197а.о.м.), а отже такими які при взаємодії з α-частинкою (m=4а.о.м.) не будуть “відскакувати” від неї, та додатково не впливатимуть на траєкторію руху цієї частинки. По друге, Резерфорд розумів, що в умовах його експерименту, шар досліджуваної речовини має бути гранично тонким. Адже якщо таких шарів буде багато, то α-частинки багаторазово взаємодіючи з атомами речовини та багаторазово змінюючи траєкторію свого руху, “намалюють” певну усереднену картинку яка не відображатиме закономірностей внутрішнього устрою атома. А золото було саме тим матеріалом, який з незапам’ятних часів вміли виготовляти у вигляді надтонких плівок (плівок, товщина яких близька до одного мікрона, тобто до 0,001мм).

Реалізуючи свої ідеї, Резерфорд в 1906 році створює прилад для дослідження внутрішнього устрою атома (мал.151). Цей прилад представляє собою герметичний корпус в середині якого, в умовах глибокого вакууму знаходяться: контейнер з радіоактивною речовиною; тонкий шар золотої фольги; люмінісцируючий екран. Принцип дії цієї системи очевидно простий. З отвору радіоактивного контейнеру вилітають α-частинки. Пролітаючи через тонкий шар золота, вони певним чином взаємодіють з його атомами та потрапляють на люмінісцируючий екран. При цьому у відповідних точках екрану можна побачити певні світлові спалахи.
Мал.151. Схема та результати дослідів Резерфорда.
На які ж результати очікував Резерфорд виходячи з того, що модель Томсона є правильною? Перш за все Резерфорд розумів, що надлегкі електрони не можуть суттєво вплинути на поведінку масивних α-частинок (mα/me=7300). Ця поведінка визначальним чином залежатиме від взаємодії α-частинки з тією масивною, позитивно зарядженою речовиною яка утворює тіло атома. При цьому можливі три варіанти поведінки ?-частинок. 
  1. Якщо густина тіла атома є гранично малою (умовно кажучи, тіло атома є “газоподібним”), то всі α-частинки практично безперешкодно пролітатимуть через атоми речовини та потраплятимуть в центр екрану. 
  2. Якщо густина тіла атому є помірно великою (умовно кажучи, тіло атома є “рідким”), то всі α-частинки в процесі проходження через це тіло будуть гальмуватися та відповідним чином розсіюватись. А це означає, що потік α-частинок на екрані утворить однорідну пляму, діаметр якої залежатиме від густини тіла атома (чим більша густина, тим більша площа плями).
  3. Якщо ж густина тіла атома є гранично великою (умовно кажучи, тіло атома є “твердим”), то при взаємодії з цим тілом, всі α-частинки відбиватимуться від нього.
Таким чином, якщо виходити з того, що модель Томсона є правильною, то в залежності від густини тієї речовини яка утворює тіло атома, Резерфорд мав би отримати один з наступних результатів.
Результати:
  • всі α-частинки потрапляють в центр екрану;
  • всі α-частинки рівномірно розсіюються по певній частині екрану;
  • всі α-частинки відбиваються від золотої фольги.
Які ж результати отримав Резерфорд в дійсності? А ці результати були наступними. Переважна більшість α-частинок пролітаючи через фольгу потрапляли в центральну частину екрану. Приблизно десять відсотків α-частинок, пролітаючи через фольгу суттєво відхилялись та розсіювались по екрану. Деякі ж α-частинок (приблизно одна на десять тисяч) відбивались від фольги так, ніби наштовхувались на масивну тверду перешкоду (мал.152). Дані результати безумовно вказували на те, що модель Томсона є неправильною. Ці результати можна було пояснити лише в тому випадку, якщо виходити з того, що в центрі атома знаходиться невелике за розміром, масивне, позитивно заряджене ядро.










Історія наукових поглядів

Про те, що всі речовини складаються з надзвичайно дрібненьких, неподільних частинок, давньогрецькі філософи говорили та писали ще за 500 років до нашої ери. Ці частинки вони називали “атомами” тобто “неподільними” (грец. atomos – неподільний).

Власне такими неподільними, атоми вважались до початку двадцятого століття. Лише в 1897 році відбулася подія, яка кардинально змінила історію атома. В цьому році, англійський фізик Джозеф Томсон (1856-1940) на основі аналізу багатьох експериментальних фактів, безумовно довів, що до складу будь якої речовини, а отже і до складу її атомів, входять дрібненькі, негативно заряджені частинки, які отримали назву електрони. Іншими словами, в 1897 було відкрито першу елементарну частинку – електрон (m=9,1·10-31кг; q0=e= -1,6·10-19Кл). При цьому стало ясно, що атом має певний внутрішній устрій. З’ясовуючи цей устрій, доречно сказати про те, а що ж власне знали вчені про атоми на початок 20-го століття.
А знали вони наступне:
  1. Атоми – частинки електронейтральні, однак такі, що за певних умов можуть перетворюватись на позитивно чи негативно заряджені іони;
  2. Атоми – частинки стабільні та довговічні;
  3. При енергетичному збуджені, атоми випромінюють світло, при цьому кожна різновидність атомів дає свій неповторний лінійчатий спектр;
  4. До складу атомів входять електрони.
Аналізуючи вище наведені факти та спираючись на закони класичної фізики, Джозеф Томсон в 1902 році запропонував першу, науково обгрунтовану модель атома – модель Томсона. Згідно з цією моделлю, атом представляє собою кулю однорідної, позитивно зарядженої речовини, в якій міститься певна кількість легеньких, негативно заряджених електронів (мал.150).
мал.150. Схема загального устрою атома у відповідності з моделлю Томсона.
Модель Томсона цілком прийнятно (у всякому разі на якісному рівні) пояснювала всі відомі властивості атома. Дійсно. Згідно з цією моделлю, до складу атома входять електрони. За нормальних умов, атом Томсона є електронейтральним, тобто таким в якому загальний позитивний заряд кулястого тіла атома, вточності дорівнює загальному негативному заряду електронів.